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Abstract. We calculate Berry’s phase and the Hannay angle for some physically interesting 
coherent states with the parameters characterising the coherent states taken to be slowly 
varying. Interestingly, we find that the harmonic oscillator coherent states provide an 
example for which, although the Hannay angle is zero, Berry’s phase is non-zero. 

Phases in quantum mechanics often give rise to interesting observable physical 
phenomena. One such phase factor which has attracted considerable interest in recent 
years is Berry’s phase (Berry 1984). This arises in the context of Hamiltonians H ( R (  t ) )  
which depend on slowly varying external parameters I?(?). Berry has shown that, in 
the adiabatic approximation, the solution of the time-dependent Schrodinger equation, 
initially chosen to be a non-degenerate eigenstate of the instantaneous Hamiltonian 

acquires, in addition to the usual ‘dynamical phase factor’, a geometrical phase factor 
given by 

as the parameters are slowly varied along a closed curve c in the parameter space in 
time T. The expression ( 2 )  for -y,,(c) may alternatively be written as 

A classical analogue of Berry’s phase, called the Hannay angle, was later discovered 
by Berry himself and Hannay (Berry 1985, Hannay 1985). For a classical Hamiltonian 
H( p ,  q, R( t ) )  depending on slowly varying external parameters they showed that, in 
the adiabatic approximation, the angle variable w conjugate to the action variable I 
acquires a shift given by 
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(4) 
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as one goes round a closed circuit c in the parameter space. They further show that 
semiclassically Berry’s phase y,,(c) and the Hanny angle A w (  I ,  c) are related to each 
other by the following equation: 

In the literature there exist several works directed towards 
( a )  providing a mathematical interpretation to Berry’s phase (Simon 1983); 
(b) generalising Berry’s result to the degenerate case (Wilczek and Zee 1984); 
( c )  establishing mathematical conditions for the existence of a non-trivial Berry 

( d )  relating Berry’s phase to Wess-Zumino terms and to anomalies in field theories 

(e )  experimentally verifying the existence of Berry’s phase (Tomita and Chiao 1986). 
In this letter we study Hamiltonians which admit (i)  harmonic oscillator coherent 

states, (ii) spin coherent states and (iii) squeezed coherent states as their eigenstates. 
We calculate Berry’s phase and the Hannay angle for these states taking the two 
parameters characterising them as the slowly varying parameters. 

phase (Kiritsis 1986); 

(Aitchison 1986, Sonoda 1986); 

First we consider harmonic oscillator coherent states. 
(a) Berry’s Phase. Consider the Hamiltonian for a displaced harmonic oscillator: 

If= h w [ ( a + - a * ) ( a - a ) + ; ]  (6a) 

= D ( a ) [  f iw(a+a  + f ) ]D’ (a )  (6b) 

D ( a )  =exp(aa+-a*a)  ( 7 )  

where 

and a = XI  +iX,. We take XI and X, to be slowly varying parameters. As is well 
known the eigenstates of this Hamiltonian are the coherent states 

In, a ) =  D(a)ln) ( 8 )  

where In) are the usual harmonic oscillator states. 
Berry’s phase is given by 

Y n ( c ) =  dX(n, a l v ~ l n ,  a )  I, 
= Jc dX(nlD’(a)V,D(a)lna). 

Using 

which follow from 

we obtain 
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which, on using the Green theorem in a plane, becomes 

y,,( c )  = -2 x (area of the circuit) 

L1073 

(14) 

for all n. 
(b) The Hannay angle. The classical Hamiltonian for this problem is 

H = f { [ p  - (2ho) ' /2Xz ]2+w2[q  - (2h /w)1 /2X1]2} .  (15) 

In terms of action and angle variables I and w the expressions for p and q are (Berry 
1985) 

p = ( 2 h ~ ) " ~ x ,  - (21w)'/~sin w 

q = ( 2 % / 0 ) ' / z x ,  +(2z/w)'/2 cos w. 

Substituting from (16) in (4) we get 

A w ( I ,  c )  = 0 (17) 

in agreement with the semiclassical formula ( 5 ) .  
Next we consider spin coherent states. 
(a)  Berry's phase. Consider the Hamiltonian 

H = X I J l  + X J ,  + X J ,  

where J, are the angular momentum operators and 

X ,  = B sin 6 cos 6 (19) 
We take 6 and 4 to be slowly varying. This Hamiltonian describes the motion of a 
spin J in a magnetic field whose magnitude is B and whose direction varies slowly. 
This Hamiltonian has been investigated by several authors (Berry 1984, Kuratsuji and 
Iida 1985). The ground state of this Hamiltonian is the spin coherent state (Arrechi 
et a1 1973) 

(18) 

X 2  = B sin 6 sin 6 x,  = B cos 6. 

16) = exp[6J+ - c*J-l/J, -J) (20) 

6 = e-'+6/2. (21) 

where IJ, -J) is the usual angular momentum eigenstate with J ,  = -J and 

Another useful expression for the spin coherent state (Arrechi et a1 1973) is 

15) = ( 1  +I6I2)-' exp(tJ+)IJ+, -1) 

where 5 = e-" tan( 612). 
Using (22) it is easily seen that 

Using the results of Arrechi et a1 for the expectation values of an arbitrary product 
of angular momentum operators between spin coherent states we find 

(51J+15) = 2J(1+ 151*)-'5* 
From (23) and (24) we obtain 
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and hence 

which can be shown to be J times the solid angle subtended by the circuit at the origin 
in  the parameter space. 

We wish to note that the results for the harmonic oscillator coherent states can be 
obtained as a limiting case of that for spin coherent states. It is known that the 
Heisenberg algebra of a, a+ ,  a+a and I can be obtained from the SU(2) algebra by 
a group contraction (Arrechi er a1 1973). For the coherent states this implies that the 
harmonic oscillator coherent states can be recovered from the spin coherent states by 
putting 5 = 6 = ca and taking the limit c + 0, J + 00 such that 2Jc2 = 1. Taking these 
limits in (26) we get 

y ( c )  = loT d t ( a - a * ") 
dt  

which is identical to the result (14) given earlier. 
(b) The Hannay angle. Gozzi and Thacker (1987) have constructed a classical 

analogue of the Hamiltonian (18) with J = f in terms of Grassmann variables and have 
calculated the Hannay angle for that system and have checked that it is related to the 
Berry's phase according to the semiclassical formula ( 5 ) .  

Finally, we consider squeezed coherent states. 
(a) Berry's phase. Consider the Hamiltonian 

H = D ( a ) S ( P ) [ h w ( a + a  +f)]S+(p)D+(a) (28) 

S ( p )  = exp($a+a+ - f p * a a )  (29) 

where D ( a )  is the same as in (7) and the squeeze operator S ( P )  is given by 

where P = X, + iXz. 

for it in terms of a+ and a may be written out using 
The Hamiltonian (28) is quadratic in (a'- a*) and ( a  - a )  and the full expression 

D ( a ) a D + ( a )  = a  -a (30) 

S(P)aS ' (P )  =cosh ra+-e-"sinh ra (31) 

with @=re ie .  In the following we shall take a to be a constant and the real and 
imaginary parts XI and X 2  of P to be slowly varying with time. This Hamiltonian is 
thus a particular case of the general quadratic Hamiltonian considered by Berry (1985). 

The eigenstates of the Hamiltonian (28) are the so-called squeezed states (Hollen- 
horst 1980) 

In, a, P ) =  D(a)S(P)ln). (32) 
Berry's phase is given by 
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The quantity (nlS’(p)V,S(p)ln) can be easily computed from the following expression 
for S ( p )  (Hollenhorst 1980): 

S ( p )  = exp[ieie(tanh r)a+a+](cosh r ) - ” ,  

x exp[-$ eie(tanh r ) a a ] .  (34 )  

If the circuit in the X I  - X ,  space is parametrised by r = r( e), 0 S 8 s 257, then one 
obtains the following expression for y,,(c): 

y , , ( c ) = - ( n + f )  [02nd8sinh2 r ( 8 ) .  ( 3 5 )  

For a circle of radius R in X I  - X 2  space, (35 )  gives 

yn (c )=- (n+ i )2ns inh2  R. (36 )  
(b) The Hannay angle. The classical Hamiltonian H( p ,  q, X) corresponding to (28 )  is 

If = D 3 w q ) 2 + 2 x 2 ( w q ) P  + X,P21 (37 )  

where 

X ,  = cosh 2r - sinh 2 r  cos 8 

Following Berry (1985) the expressions for p and q in terms of action and angle 
variables I and w are 

(38 )  

(39 )  

X 2  = cosh 2r + sinh 2r cos 8 X ,  = sinh 2r. 

q = ( 2 x , I / w ) ” 2  cos w 

p = - ( ~ x , I / w ) ~ ” [ ( x , / x , )  cos w + ( w / x , )  sin w]. 

Substituting this in ( 4 ) ,  one finds that the Hannay angle in this case turns out to be 

A m (  I ,  c )  = jo2n d 8  sinh2 r( 8) (40) 

as would be expected from the semiclassical formula ( 5 ) .  

Berry’s phase through quantum optics experiments. 
To conclude, we hope that our results will be useful in verifying the existence of 
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